پیش بینی تقاضای تجهیزات پزشکی (سی تی اسکن) بر اساس شبکه های عصبی مصنوعی و روش arima
نویسندگان
چکیده
بخش بهداشت و درمان و زیرساخت های مورد نیاز آن هم در بخش نرم افزاری و هم در بخش سخت افزاری همواره مورد توجه بوده است. در این میان اهمیت تجهیزات و اقلام پزشکی در سیستم سلامت کشور بر هیچ کس پوشیده نیست. سازمان ها و شرکت های فعال در این بخش باید بتوانند تصمیمات صحیح را با توجه به اطلاعات موجود در محیط پر نوسان کسب و کار امروز اخذ نمایند. بنابراین، تخمین مقدار تقاضا در دوره های آتی موضوعی حیاتی به نظر می رسد. روش و ابزارهای مختلفی برای انجام پیش بینی تقاضا وجود دارد که هر یک مزیت ها و نقاط ضعف مخصوص به خود را دارند. در این مقاله با استفاده از یک شبکه عصبی مصنوعی چند لایه پیشخور با دو لایه پنهان که با الگوریتم ژنتیک به عنوان الگوریتم یادگیری آموزش داده شده است، سیستمی مقایسه ای با روش رایج مورد استفاده در پیش بینی (روش باکس – جنکینز) با مدل arima(2,1,1) برای پیش بینی تقاضای دستگاه سی تی اسکن ارائه شده است که با توجه به معیار سنجش دقت مدل ها یعنی میانگین مجذور خطا (mse)، مدل شبکه عصبی اثربخشی و کارایی بیشتری را در مقابل با روش آریما در پیش بینی تقاضای دستگاه سی تی اسکن با توجه به داده ها و اطلاعات موجود از خود نشان داده است.
منابع مشابه
پیشبینی تقاضای تجهیزات پزشکی (سی تی اسکن) بر اساس شبکههای عصبی مصنوعی و روش ARIMA
بخش بهداشت و درمان و زیرساختهای مورد نیاز آن هم در بخش نرمافزاری و هم در بخش سختافزاری همواره مورد توجه بوده است. در این میان اهمیت تجهیزات و اقلام پزشکی در سیستم سلامت کشور بر هیچکس پوشیده نیست. سازمانها و شرکتهای فعال در این بخش باید بتوانند تصمیمات صحیح را با توجه به اطلاعات موجود در محیط پرنوسان کسب و کار امروز اخذ نمایند. بنابراین، تخمین مقدار تقاضا در دورههای آتی موضوعی حیاتی به...
متن کاملپیش بینی تولید آبزیان دریایی در ایران با استفاده از روش ARIMA و شبکه عصبی مصنوعی
پیشبینی پدیدههای اقتصادی ساختاری فراهم میکند تا مدیران و مسؤلان اقتصادی را در گرفتن تصمیمهای درست یاری دهد. هدف اصلی این مطالعه پیشبینی مقدار تولید آبزیان دریایی در ایران است. برای این منظور از روشهای سری زمانی خود توضیح جمعی میانگین متحرک (ARIMA)[1] و شبکه عصبی مصنوعی[2] استفاده میشود. در این مطالعه سه ساختار گوناگون شبکه عصبی شامل شبکه عصبی پیشرو[3]، تابع پایه شعاعی[4] و المن[5] بکار ...
متن کاملمطالعه تطبیقی روش های خطی ARIMA و غیر خطی شبکه های عصبی فازی در پیش بینی تقاضای اشتراک گاز شهری
اطلاع از میزان تقاضای موجود در هر دوره یکی از مباحثی است که شرکت ملی گاز در راه پاسخگویی به مراجعان به آن نیاز دارد.عدم اطلاع از میزان تقاضای اشتراک سبب ایجاد مشکلاتی مانند عدم آگاهی از تعداد پیمانکاران مورد نیاز و همچنین فقدان برنامه کنترل موجودی مناسب برای انواع کنتورهای موردنیاز و دیگر عوامل مرتبط می شود. در چند دهه گذشته،اقتصاددانان و علمای مدیریت برای براورد تقاضا غالباً از روش های اقتصادس...
متن کاملمطالعه تطبیقی روش های ARIMA و شبکه های عصبی مصنوعی در پیش بینی نیاز داخلی برق کشور
آگاهی از میزان تقاضای انرژی برق در هر دوره، به منظور برنامه ریزی دقیق، برای اعمال سیاست گذاری های لازم، امری ضروری است. از این رو پیش بینی تقاضای آن برای بخش های مختلف اقتصادی حائز اهمیت است. امروزه از بین روش های پیش بینی، شبکه های عصبی مصنوعی، در زمینه تجزیه و تحلیل و مدل سازی روابط غیرخطی یکی از ابزار قدرتمند به حساب می آید که استفاده از آن در سال های اخیر در اقتصاد کلان گسترش یافته است...
متن کاملمدلسازی و پیش بینی صادرات آبزیان دریایی در ایران با استفاده از روش ARIMA و شبکه های عصبی مصنوعی
هدف اصلی این مقاله، مدلسازی و پیش بینی میزان صادرات آبزیان دریایی در ایران است. برای این منظور، از روش های سری زمانی خود توضیح جمعی میانگین متحرک(ARIMA) و شبکه عصبی مصنوعی استفاده می شود. به منظور انجام بررسی، از داده های ماهانه دوره 1374:03 تا 1387:12 برای برآورد و آموزش مدل و از داده های دوره از 1388:01 تا 1390:12 به منظور بررسی قدرت پیش بینی مدل های مختلف استفاده می شود. در این مطالعه، معیار...
متن کاملپیش بینی قیمت نفت با دو روش arima و شبکه های عصبی مصنوعی
توانایی کمنظیر شبکههای عصبی مصنوعی به عنوان ابزاری قدرتمند برای تحلیل و برآورد در حوزه علوم تجربی و مهندسی موجب شد تا مورد توجه اقتصاددانان قرار گیرد. در این پژوهش، پس از مرور پژوهشهای انجامشده در مورد توانایی پیشبینی مدلهای خود توضیح جمعی میانگین متحرک (arima)[1]و شبکههای عصبی مصنوعی(ann)[2] به مقایسه این دو روش برای پیشبینی قیمت روزانه نفت در دوره آوریل 1983 تا ژوئن 2005 پرداختهایم. ...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
پژوهش ها و سیاست های اقتصادیجلد ۱۹، شماره ۵۷، صفحات ۱۷۱-۱۹۸
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023